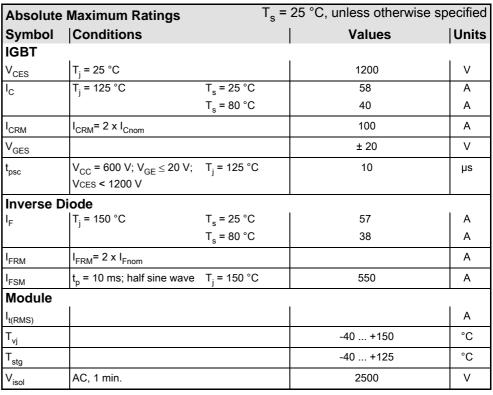
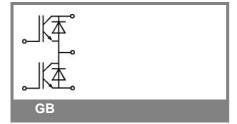
SK60GB123

IGBT Module

SK60GB123


Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics T _s			= 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,3	mA		
		T _j = 125 °C				mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA		
		T _j = 125 °C				nA		
V _{CE0}		T _j = 25 °C		1,2		V		
		T _j = 125 °C		1,2		V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		26		mΩ		
		T _j = 125°C		38		mΩ		
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,5	3	V		
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V		
C _{ies}				3,3		nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF		
C _{res}				0,22		nF		
t _{d(on)}				40		ns		
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		50		ns		
E _{on}		I _{Cnom} = 50A		7,6		mJ		
$t_{d(off)}$	$R_{Goff} = 22 \Omega$	T _j = 125 °C		380		ns		
t _f		V _{GE} =±15V		75		ns		
E _{off}				5,1		mJ		
$R_{th(j-s)}$	per IGBT				0,6	K/W		

SK60GB123

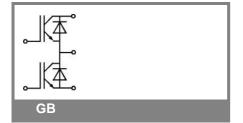
IGBT Module

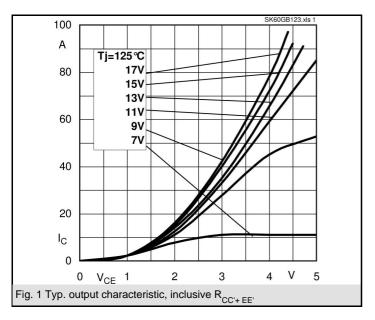
SK60GB123

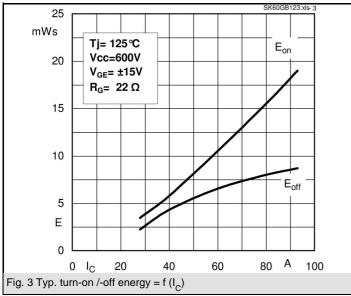
Preliminary Data

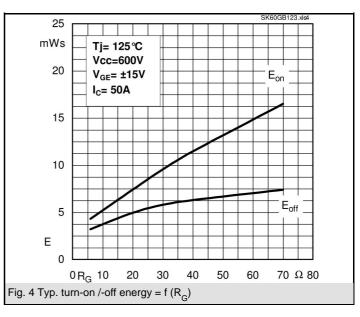
Features

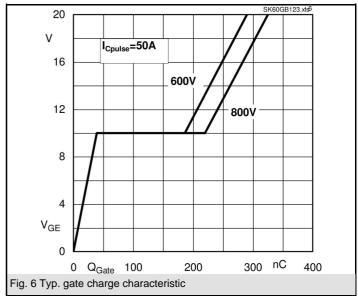
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- · High short circuit capability
- Low tail current with low temperature dependence

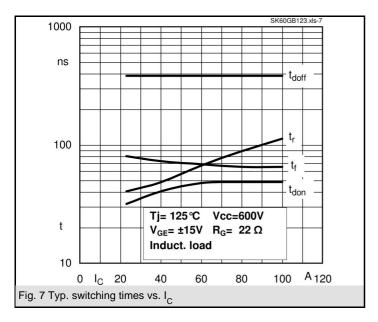

Typical Applications

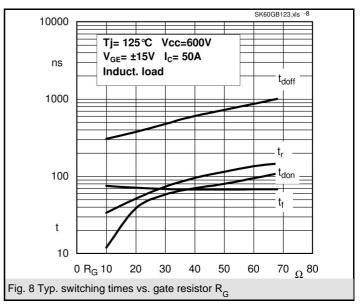

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

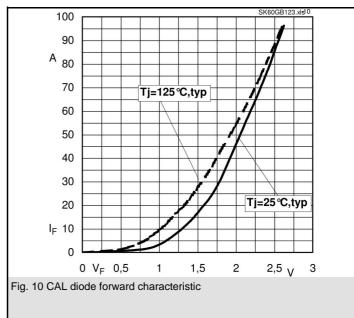

Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V			
		$T_j = 125 ^{\circ}C_{chiplev}$		1,8		V			
V _{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		16	22	mΩ			
I _{RRM}	I _{Fnom} = 50 A	T _i = 125 °C		40		Α			
Q_{rr}	di/dt = -800 A/μs	•		8		μC			
E _{rr}	V _{CC} = 600V			2		mJ			
R _{th(j-s)D}	per diode				0,9	K/W			
M_s	to heat sink M1		2,25		2,5	Nm			
w				30		g			

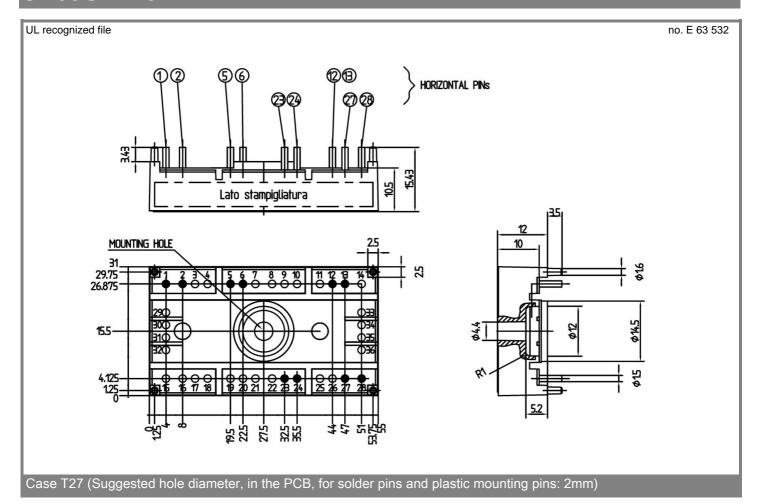

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

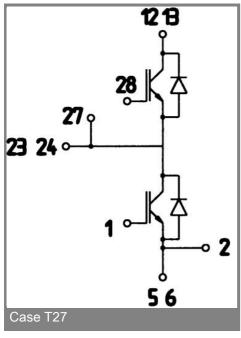

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.










SK60GB123

